Connect with us

Berita

Embam: 5 Metode bahwa lembaga dapat mengurangi biaya kecerdasan buatan tanpa mengorbankan kinerja

Published

on

Ingin lebih banyak visi yang cerdas dari kotak masuk Anda? Berlangganan buletin mingguan kami untuk mendapatkan apa yang hanya terkait dengan lembaga AI, data dan pemimpin keamanan. Berlangganan sekarang


Lembaga tampaknya menerimanya sebagai fakta penting: model kecerdasan buatan membutuhkan banyak akun; Mereka hanya menemukan cara untuk mendapatkan lebih banyak dari mereka.

Tapi seharusnya tidak seperti ini, menurut Sasha Lakkoni, Amnesty International dan iklim di Sulaman. Bagaimana jika ada cara yang lebih cerdas untuk menggunakan kecerdasan buatan? Bagaimana jika, alih -alih berusaha mencapai lebih banyak (sering tidak perlu) dan cara untuk menjalankannya, dapat fokus pada peningkatan kinerja model dan akurasi?

Pada akhirnya, pembuat model dan lembaga fokus pada masalah yang salah: mereka harus komputasi TergenangTidak lebih sulit atau lebih usaha, kata Lukoni.

“Ada cara yang lebih cerdas untuk melakukan hal -hal yang saat ini kita lakukan, karena kita sangat buta: kita membutuhkan lebih banyak fluktuasi, dan kita membutuhkan lebih banyak unit pemrosesan grafis, dan kita membutuhkan lebih banyak waktu.”


Kecerdasan buatan membatasi batasnya

Tutup daya, biaya tinggi simbol, dan penundaan dibentuk kembali. Bergabunglah dengan salon eksklusif kami untuk menemukan bagaimana perbedaan besar:

  • Mengubah energi menjadi keuntungan strategis
  • Mengajar penalaran yang efektif untuk keuntungan produktivitas nyata
  • Membuka Pengembalian Investasi Kompetitif dengan Sistem Kecerdasan Buatan Berkelanjutan

Mengamankan tempat Anda untuk tinggal di latar depan: https://bit.ly/4mwngngo


Di bawah ini adalah lima pembelajaran utama dari pelukan yang dapat membantu institusi dari semua ukuran menggunakan kecerdasan buatan lebih efisien.

1: Ukuran yang tepat dari model misi

Hindari merusak model raksasa dan tujuan umum untuk setiap penggunaan. Model misi atau pemotongan dapat cocok, atau bahkan Lebih banyak model, secara akurat untuk beban kerja target – dengan biaya lebih rendah dan dengan konsumsi energi yang rendah.

Bahkan, Luccioni ditemukan dalam tes bahwa model tugas menggunakan energi kurang dari 20 hingga 30 kali energi tujuan umum. Dia berkata: “Karena ini adalah model yang dapat melakukan tugas ini, tidak seperti tugas apa pun yang Anda lempar, yang seringkali ini merupakan model linguistik yang besar,” katanya.

Distilasi adalah kuncinya di sini; Bentuk lengkap dapat dilatih pada awalnya dari awal dan kemudian memolesnya untuk tugas tertentu. “Deepseek R1, misalnya,” sangat besar sehingga sebagian besar organisasi tidak dapat menggunakannya “karena Anda membutuhkan setidaknya 8 unit pemrosesan resmi. Sebaliknya, versi suling dapat 10, 20, atau bahkan 30x lebih kecil dan dijalankan pada satu unit pemrosesan grafik tunggal.

Dia menunjukkan bahwa model open source membantu dalam efisiensi, karena mereka tidak membutuhkan pelatihan dari awal. Ini dibandingkan dengan hanya beberapa tahun, ketika perusahaan adalah sumber daya limbah karena mereka tidak dapat menemukan model yang mereka butuhkan; Saat ini, mereka dapat mulai dengan model dasar, menyesuaikan dan menyesuaikannya.

“Ini memberikan inovasi bersama bertahap, tidak seperti semua orang dilatih dalam model mereka pada koleksi data mereka dan terutama membuang -buang akun dalam proses ini,” kata Luxyoni.

Menjadi jelas bahwa perusahaan dengan cepat kecewa dengan Jenderal AI, karena biayanya belum sebanding dengan manfaatnya. Kasus penggunaan publik, seperti menulis email atau menyalin catatan rapat, sangat berguna. Namun, model tugas masih membutuhkan “banyak pekerjaan” karena model di luar kotak tidak memotongnya dan juga lebih mahal, seperti kata Luccioni.

Ini adalah batasan nilai tambah berikut. “Banyak perusahaan ingin melakukan tugas tertentu.” “Mereka tidak menginginkan Agi, mereka menginginkan kecerdasan tertentu. Ini adalah celah yang harus diberi makan.”

2. Buat efisiensi default

Adopsi “teori pembayaran” dalam desain sistem, anggaran pemikiran konservatif, selalu mengurangi fitur obstetri dan membutuhkan kepatuhan terhadap pola perhitungan berbakti tinggi.

Dalam ilmu kognitif, “teori pertahanan” adalah pendekatan untuk mengelola perubahan perilaku yang dirancang untuk mempengaruhi perilaku manusia dengan keterampilan. Lucioni menunjukkan bahwa “contoh gerejawi” menambahkan alat meja untuk makan di luar negeri: membuat orang memutuskan apakah mereka menginginkan peralatan plastik, alih -alih secara otomatis memasukkannya dengan setiap permintaan, dapat secara signifikan mengurangi limbah.

“Hanya untuk membuat orang memilih sesuatu untuk pembatalan sesuatu sebenarnya, itu sebenarnya mekanisme yang sangat kuat untuk mengubah perilaku orang,” kata Luxyoni.

Mekanisme virtual juga tidak perlu, karena mereka meningkatkan penggunaan, dan oleh karena itu, biaya karena model melakukan lebih dari yang mereka butuhkan. Misalnya, dengan mesin pencari umum seperti Google, ringkasan Gen AI secara otomatis diisi di bagian atas. Lucioni juga memperhatikan bahwa ketika saya baru-baru ini menggunakan GPT-5 dari Openai, model secara otomatis berfungsi dalam mode berpikir penuh pada “pertanyaan yang sangat sederhana”.

“Bagi saya, pengecualian seharusnya,” katanya. Seperti, “Apa arti hidup, lalu, saya ingin ringkasan Gen Ai. Tetapi dengan” Apa cuaca di Montreal “atau” jam kerja apa di apotek lokal? “Saya tidak memerlukan ringkasan kecerdasan buatan, namun default.

3. Meningkatkan penggunaan perangkat

Gunakan silinder. Sesuaikan ukuran pembayaran yang tepat dan pastikan mereka menghasilkan perangkat spesifik untuk mengurangi memori yang terbuang dan menarik energi.

Misalnya, perusahaan itu sendiri harus bertanya: haruskah modelnya selalu? Akankah orang mengumpulkannya dalam waktu yang sebenarnya, 100 permintaan sekaligus? Dalam hal ini, peningkatan selalu diperlukan, seperti yang ditunjukkan Lucioni. Namun, di banyak orang lain, bukan; Model ini dapat dioperasikan secara berkala untuk meningkatkan penggunaan memori, dan informasi yang salah dapat memastikan penggunaan memori yang optimal.

“Ini agak mirip dengan tantangan teknik, tetapi ini adalah tantangan yang sangat spesifik, jadi sulit untuk mengatakan,” hanya distilasi semua model, “atau” mengubah akurasi di semua model. ”

Dalam salah satu studi terbarunya, saya menemukan bahwa ukuran pembayaran tergantung pada perangkat, bahkan untuk jenis atau versi yang ditentukan. Transisi dari satu ukuran batch ke satu plus dapat meningkatkan penggunaan energi karena model membutuhkan lebih banyak bilah memori.

“Ini adalah sesuatu yang tidak terlihat orang, mereka seperti,” Oh, saya akan meningkatkan ukuran batch, “tetapi itu benar -benar datang untuk beralih semua hal yang berbeda ini, dan tiba -tiba itu sangat efektif, tetapi hanya berfungsi dalam konteks yang Anda tentukan.”

4. Memotivasi transparansi energi

Itu selalu membantu ketika orang termotivasi; Untuk tujuan ini, pelukan diluncurkan awal tahun ini Titik kekuatan kecerdasan buatan. Ini adalah cara baru untuk meningkatkan lebih banyak efisiensi energi, menggunakan sistem peringkat 1 hingga 5, dengan model paling efisien yang mendapatkan kondisi “lima bintang”.

Ini dapat dianggap “Bintang Energi untuk Kecerdasan Buatan”, dan terinspirasi oleh Program Federal yang kemungkinan akan berakhir, yang menetapkan spesifikasi efisiensi energi dan merek yang memenuhi syarat dengan logo Energy Star.

“Dua dekade yang lalu, ini adalah motivasi yang sangat positif. Orang -orang ingin mengklasifikasikan bintang -bintang, kan?” Kata Luxiouni. “Sesuatu yang mirip dengan gelar kekuatan akan menjadi hebat.”

Wajahnya yang tertanam Para pemimpin sekarang,, yang Anda rencanakan untuk memperbarui dengan model baru (Deepseek, GPT -SS) pada bulan September, dan melakukannya terus -menerus setiap 6 bulan atau lebih cepat dengan ketersediaan model baru. Lukoni mengatakan bahwa tujuannya adalah agar para pembangun model akan mempertimbangkan klasifikasi “lencana kehormatan.”

5. Refleksi tentang mentalitas “lebih banyak akun lebih baik”

Alih -alih mengejar GPU terbesar, mulailah dengan bertanya: “Apa cara paling cerdas untuk mencapai hasilnya?” Untuk banyak beban kerja, struktur yang paling cerdas dan data yang terkoordinasi mengungguli brute force.

“Saya pikir orang mungkin tidak memerlukan banyak unit pemrosesan grafis seperti yang mereka pikirkan,” kata Luxyoni. Alih -alih hanya pergi ke grup terbesar, perusahaan mendesak untuk memikirkan kembali tugas -tugas bahwa unit pemrosesan grafis akan menyelesaikan unit grafis dan mengapa mereka membutuhkannya, bagaimana mereka telah membuat jenis tugas ini sebelumnya, dan apa penambahan unit pemrosesan grafis tambahan pada akhirnya.

Dia berkata: “Ini adalah semacam perlombaan ini ke bawah di mana kita membutuhkan kelompok yang lebih besar.” “Dia berpikir tentang apa yang dia gunakan untuk kecerdasan buatan, dan teknologi apa yang Anda butuhkan, apa yang membutuhkannya?”


Tautan sumber
Continue Reading
Click to comment

Leave a Reply

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Berita

Platform pengkodean getaran, Cursor, meluncurkan komposer LLM internal pertamanya, Komposer, yang menjanjikan peningkatan kecepatan 4X lipat

Published

on

Alat kripto yang menarik, indikatornya, telah ada sejak awal dimana sajadia punya Komposer memperkenalkanModel Bahasa Markup Besar (LLM) pertama yang dibuat sendiri sebagai bagian dari programnya Pembaruan platform indeks 2.0.

Komposer dirancang untuk menjalankan tugas pemrograman dengan cepat dan akurat di lingkungan produksi, mewakili langkah baru dalam pemrograman berbantuan AI. Ini sudah digunakan oleh tim teknik Cursor dalam pengembangan sehari-hari – menunjukkan kematangan dan stabilitas.

Berdasarkan indikatornya, komposer menyelesaikan interaksi terbanyak Kurang dari 30 detik Sambil mempertahankan kemampuan tingkat tinggi untuk bernalar di seluruh basis kode yang besar dan kompleks.

Model ini digambarkan empat kali lebih cepat dibandingkan sistem cerdas serupa, dan dilatih berdasarkan alur kerja “agen” – di mana agen pengkode independen secara kolaboratif merencanakan, menulis, menguji, dan meninjau kode.

Sebelumnya, indikator ini didukung "Pengodean suasana" — Menggunakan AI untuk menulis atau menyelesaikan kode berdasarkan instruksi bahasa alami dari pengguna, meskipun mereka adalah seseorang yang tidak terlatih dalam pengembangan — Di atas LLM berpemilik terkemuka lainnya Dari OpenAI, Anthropic, Google dan xAI. Opsi ini masih tersedia untuk pengguna.

Hasil standar

Kemampuan komposer diukur dengan menggunakan "kursi indikator," Kumpulan evaluasi internal yang berasal dari permintaan agen pengembang nyata. Standar ini tidak hanya mengukur kebenaran, tetapi juga kepatuhan model terhadap abstraksi, konvensi gaya, dan praktik teknik saat ini.

Dengan standar ini, Komposer mencapai kecerdasan pemrograman tingkat batas saat membuat file 250 simbol per detik – Hampir dua kali lebih cepat dibandingkan model inferensi cepat terkemuka dan empat kali lebih cepat dibandingkan sistem frontier sebanding.

Model perbandingan yang dipublikasikan Cursor membagi model ke dalam beberapa kategori: “Terbuka Terbaik” (misalnya, Qwen Coder, GLM 4.6), “Fast Frontier” (Haiku 4.5, Gemini Flash 2.5), “Frontier 7/2025” (model pertengahan tahun terkuat yang tersedia), dan “Best Frontier” (termasuk GPT-5 dan Claude Sonnet 4.5). Komposer mencocokkan kecerdasan sistem kelas menengah sambil memberikan kecepatan generasi tertinggi yang pernah tercatat di antara semua kelas yang diuji.

Sebuah model berdasarkan pembelajaran penguatan dan arsitektur campuran ahli

Ilmuwan riset Sasha Rush dari Cursor memberikan wawasan tentang pengembangan model di Postingan di jejaring sosial Xmenggambarkan komposer sebagai model campuran para ahli terpelajar (RL):

“Kami menggunakan RL untuk melatih model MOE besar agar benar-benar ahli dalam pemrograman dunia nyata, dan juga sangat cepat.”

Rush menjelaskan bahwa tim merancang bersama lingkungan Komposer dan Kursor agar model dapat berjalan secara efisien pada skala produksi:

“Tidak seperti sistem pembelajaran mesin lainnya, Anda tidak dapat mengambil banyak manfaat dari sistem berskala besar. Kami bersama-sama merancang proyek ini dan indikatornya agar agen dapat berjalan pada skala yang diperlukan.”

Komposer dilatih tentang tugas rekayasa perangkat lunak nyata, bukan kumpulan data statis. Selama pelatihan, model dijalankan dalam basis kode lengkap menggunakan berbagai alat produksi—termasuk pengeditan file, pencarian semantik, dan perintah terminal—untuk memecahkan masalah teknik yang kompleks. Setiap iterasi pelatihan melibatkan penyelesaian tantangan konkrit, seperti menghasilkan modifikasi kode, merumuskan rencana, atau membuat penjelasan yang ditargetkan.

Cincin penguatan meningkatkan kesehatan dan efisiensi. Komposer telah belajar bagaimana membuat pilihan instrumen yang efektif, menggunakan paralelisme, dan menghindari tanggapan yang tidak perlu atau spekulatif. Seiring waktu, model tersebut mengembangkan perilaku yang muncul seperti menjalankan pengujian unit, memperbaiki bug Linter, dan melakukan pencarian kode multi-langkah secara mandiri.

Desain ini memungkinkan Composer untuk beroperasi dalam konteks runtime yang sama dengan pengguna akhir, sehingga lebih kompatibel dengan kondisi pemrograman dunia nyata – berhubungan dengan kontrol versi, manajemen ketergantungan, dan pengujian berulang.

Dari prototipe hingga produksi

Perkembangan Komposer mengikuti prototipe internal sebelumnya yang dikenal sebagai Cheetahyang digunakan Index untuk mengeksplorasi heuristik latensi rendah untuk tugas pemrograman.

“Cheetah adalah versi 0 dari model ini terutama untuk pengujian kecepatan,” kata Rush pada X. “Metrik kami menunjukkan bahwa dia (sang komposer) sama cepatnya, tetapi jauh lebih pintar.”

Keberhasilan Cheetah dalam mengurangi latensi telah membantu Cursor mengidentifikasi kecepatan sebagai faktor kunci dalam kepercayaan pengembang dan kemudahan penggunaan.

Komposer mempertahankan daya tanggap tersebut sekaligus meningkatkan inferensi dan generalisasi tugas secara signifikan.

Pengembang yang menggunakan Cheetah selama pengujian awal mencatat bahwa kecepatannya mengubah cara mereka bekerja. “Itu sangat cepat sehingga saya bisa tetap mendapatkan informasi terbaru saat bekerja dengannya,” komentar salah satu pengguna.

Komposer mempertahankan kecepatan ini tetapi memperluas kemampuan untuk tugas pengkodean, pemfaktoran ulang, dan pengujian multi-langkah.

Integrasi dengan Indikator 2.0

Komposer telah terintegrasi penuh ke dalam Cursor 2.0, pembaruan besar pada lingkungan pengembangan agen perusahaan.

Platform ini menawarkan antarmuka multi-agen, memungkinkan Hingga delapan agen untuk bekerja secara paralel, Masing-masing berada di ruang kerja yang terisolasi menggunakan git work tree atau mesin jarak jauh.

Dalam sistem ini, komposer dapat bertindak sebagai satu atau lebih agen, melakukan tugas secara mandiri atau kolaboratif. Pengembang dapat membandingkan beberapa hasil dari pengoperasian agen secara bersamaan dan memilih yang terbaik.

Cursor 2.0 juga menyertakan fitur pendukung yang meningkatkan efektivitas Composer:

  • Peramban di dalam editor (GA) – Memungkinkan agen untuk menjalankan dan menguji kode mereka langsung di dalam IDE, mengarahkan informasi DOM ke formulir.

  • Tingkatkan peninjauan kode – Mengumpulkan perbedaan di beberapa file untuk pemeriksaan lebih cepat terhadap perubahan yang dihasilkan oleh model.

  • Terminal mode proteksi (GA) – Isolasi perintah shell yang dikelola agen untuk eksekusi lokal yang aman.

  • Modus suara – Menambahkan kontrol ucapan-ke-teks untuk memulai atau mengelola sesi agen.

Meskipun pembaruan platform ini memperluas pengalaman Cursor secara keseluruhan, Composer diposisikan sebagai inti teknis yang memungkinkan enkripsi proxy yang cepat dan andal.

Infrastruktur dan sistem pelatihan

Untuk melatih Komposer dalam skala besar, Cursor membangun infrastruktur pembelajaran penguatan khusus yang menggabungkan PyTorch dan Ray untuk pelatihan asinkron di ribuan GPU NVIDIA.

Tim ini mengembangkan kernel MXFP8 MoE khusus dan memparalelkan data hash campuran, memungkinkan pembaruan model skala besar dengan overhead komunikasi minimal.

Konfigurasi ini memungkinkan Cursor untuk melatih model secara lokal dengan akurasi rendah tanpa memerlukan kuantisasi pasca-pelatihan, sehingga meningkatkan kecepatan dan efisiensi inferensi.

Pelatihan komposer bergantung pada ratusan ribu lingkungan sandbox secara bersamaan – masing-masing merupakan ruang kerja pemrograman mandiri – yang berjalan di cloud. Perusahaan telah mengadaptasi infrastruktur agen back-end untuk menjadwalkan mesin virtual ini secara dinamis, mendukung sifat eksplosif dari proses RL yang besar.

Penggunaan perusahaan

Peningkatan kinerja Komposer didukung oleh perubahan tingkat infrastruktur melalui tumpukan kecerdasan kode Cursor.

Perusahaan telah mengoptimalkan Protokol Server Bahasa (LSP) untuk diagnostik dan navigasi yang lebih cepat, terutama dalam proyek Python dan TypeScript. Perubahan ini mengurangi latensi ketika Komposer berinteraksi dengan repositori besar atau membuat pembaruan multi-file.

Pengguna perusahaan memiliki kontrol administratif atas Komposer dan agen lainnya melalui aturan tim, log audit, dan aplikasi sandbox. Lapisan Tim dan Perusahaan Cursor juga mendukung penggunaan formulir batch, autentikasi SAML/OIDC, dan analitik untuk memantau kinerja agen di seluruh organisasi.

Harga untuk pengguna individu berkisar dari Gratis (Hobi) hingga Ultra ($200 per bulan), dengan batas penggunaan yang diperpanjang untuk pelanggan Pro+ dan Ultra.

Harga bisnis mulai dari $40 per pengguna per bulan untuk Teams, dengan kontrak perusahaan yang menawarkan opsi penggunaan dan kepatuhan khusus.

Peran komposer dalam lanskap pemrograman AI yang terus berkembang

Fokus Komposer pada kecepatan, pembelajaran penguatan, dan integrasi dengan alur kerja pengkodean langsung membedakannya dari asisten pengembangan AI lainnya seperti GitHub Copilot atau Agen Replit.

Alih-alih bertindak sebagai mesin saran pasif, Composer dirancang untuk kolaborasi berbasis agen yang berkelanjutan, di mana beberapa sistem independen berinteraksi langsung dengan basis kode proyek.

Spesialisasi tingkat model ini—melatih AI untuk beroperasi di lingkungan nyata di mana ia akan beroperasi—mewakili langkah penting menuju pengembangan perangkat lunak yang praktis dan otonom. Komposer dilatih tidak hanya pada data teks atau kode statis, namun dalam IDE dinamis yang mencerminkan kondisi produksi.

Rasch menggambarkan pendekatan ini sebagai hal yang penting untuk mencapai keandalan di dunia nyata: Model ini tidak hanya mempelajari cara membuat kode, namun juga cara mengintegrasikan, menguji, dan meningkatkannya dalam konteks.

Artinya bagi pengembang perusahaan dan pemrograman dinamis

Dengan Composer, Cursor menawarkan lebih dari sekadar model cepat, Cursor menerapkan sistem AI yang dioptimalkan untuk penggunaan di dunia nyata, dirancang untuk bekerja dalam alat yang sama yang sudah diandalkan oleh pengembang.

Kombinasi pembelajaran penguatan, desain campuran ahli, dan integrasi produk yang erat memberi Komposer keunggulan praktis dalam kecepatan dan daya tanggap yang membedakannya dari model bahasa tujuan umum.

Meskipun Cursor 2.0 menyediakan infrastruktur untuk kolaborasi antara banyak agen, Composer adalah inovasi inti yang membuat alur kerja dapat dijalankan.

Ini adalah model pengkodean pertama yang dirancang khusus untuk pengkodean proxy tingkat produksi — dan gambaran awal tentang seperti apa pemrograman sehari-hari ketika pengembang manusia dan pekerja lepas berbagi ruang kerja yang sama.

Tautan sumber

Continue Reading

Berita

Christopher Schwarzenegger memamerkan hasil penurunan berat badannya sebanyak 30 pon

Published

on

baruAnda sekarang dapat mendengarkan artikel Fox News!

Seperti ayah, seperti anak laki-laki.

Christopher Schwarzenegger, 28, memukau penonton dengan fisik barunya saat keluar bersama saudara perempuannya Katherine Schwarzenegger Pratt, saudara ipar Chris Pratt dan anak-anak mereka untuk bersenang-senang memetik labu di lingkungan Brentwood di Los Angeles.

Putra bungsu Arnold Schwarzenegger dan Maria Shriver menarik perhatian saat tamasya keluarga musim gugur yang meriah, menandai transformasi yang menakjubkan.

Christopher Schwarzenegger memamerkan penurunan berat badannya yang signifikan saat jalan-jalan bersama keluarga di danau

Christopher Schwarzenegger terlihat memetik labu di Brentwood pada 27 Oktober 2025. (stoyanov/kisi belakang)

Christopher, yang mengatakan pada musim semi ini berat badannya telah turun sekitar 30 pon, memamerkan lengannya yang kencang dan fisik yang bugar saat dia membawa bukan hanya satu, tapi tiga labu berukuran sedang ke dalam mobil.

Mengenakan tank top putih, celana hijau tua, dan sepatu kets, Christopher menjaga suasana tetap sejuk dan nyaman, mengikatkan kaos putih di pinggangnya, membuat pengangkatan barang berat terlihat mudah.

Para penonton tidak bisa tidak memperhatikan bahwa adik laki-laki Schwarzenegger, Shriver, berubah menjadi mode paman penuh saat dia membantu keponakannya — Lila, 5, dan Eloise, 3 — memilih labu yang sempurna. Yang tidak hadir dalam perayaan tersebut adalah putra bungsu Katherine dan Pratt, Ford, yang berusia 11 bulan.

Christopher Schwarzenegger dengan pakaian renang biru menunjuk ke danau di belakangnya.

Christopher Schwarzenegger tampil bertelanjang dada saat berada di kapal bersama keluarganya. (Christopher Schwarzenegger/Instagram)

Ini merupakan tahun transformatif bagi Christopher, yang menjadi lebih ramping dalam beberapa bulan terakhir. Komitmennya terhadap kebugaran mencerminkan komitmen ayahnya yang terkenal, bintang “Terminator” legendaris dan mantan gubernur California, yang sering berbicara tentang pentingnya hidup sehat dan disiplin.

Chris Pratt membagikan foto langka untuk ulang tahun putranya yang ke-13

Pada bulan September, penurunan berat badan Christopher terlihat jelas selama tamasya keluarga lainnya.

Seorang wanita berambut pirang memeluk Christopher Schwarzenegger saat dia duduk di kursi kapten.

Seorang wanita berambut pirang memeluk Christopher Schwarzenegger saat dia duduk di kursi kapten. (Christopher Schwarzenegger/Instagram)

Dalam postingan Instagram, Katherine membagikan sederet foto hari keluarga di danau. Dalam beberapa foto, Christopher terlihat bertelanjang dada dan mengenakan celana renang bergaris biru putih.

Klik di sini untuk berlangganan buletin hiburan

di dalam Gambar lainDia duduk di kursi kapten dan berpose di depan kamera dengan seorang wanita berambut pirang duduk di pangkuannya sambil memeluknya.

Christopher sebelumnya telah berbicara tentang kerja keras di balik transformasi kebugarannya. Meskipun ia sering kali tidak menonjolkan diri, ia kembali menjadi sorotan pada bulan Mei berkat penampilan barunya yang sangat bugar. Dia berbicara di panel pada peresmian Beacher Vitality Happy & Healthy Summit di Los Angeles bersama Shriver, Kelly Osbourne, dan Jeff Beacher, di mana dia membahas perjalanan panjang di balik hasil yang dicapainya.

Arnold Schwarzenegger menerbitkan bersama Patrick Schwarzenegger

Arnold Schwarzenegger dan Patrick Schwarzenegger menghadiri pemutaran perdana dunia The White Lotus Musim 3. (Jeff Kravitz/Keajaiban Film HBO)

Apakah Anda menyukai apa yang Anda baca? Klik di sini untuk berita hiburan lainnya

“Itu adalah operasi besar,” kata Christopher pada sidang tanggal 10 Mei di Hollywood Roosevelt. orang-orang.

Dia melanjutkan: “Ini dimulai pada tahun 2019 ketika saya tinggal di Australia. Saya sedang dalam perjalanan besar ini. Saya telah membuat (kesepakatan) besar dengannya seperti, ‘Oh, saya akan keluar dan melakukan semua hal ini dan berada di Australia,’ dan saya melihat betapa berat badan saya menghalangi saya untuk melakukan aktivitas sehari-hari.”

Terlepas dari transformasi dramatisnya, Christopher juga mengatakan bahwa dia belum mencapai tujuannya, dan mencatat bahwa ketika melihat “foto sebelum dan sesudahnya… Saya merasa belum sampai di sana.”

Klik di sini untuk mengunduh aplikasi FOX NEWS



Tautan sumber

Continue Reading

Berita

Putin mengklaim keberhasilan besar dalam pengujian drone nuklir bawah air Poseidon

Published

on

baruAnda sekarang dapat mendengarkan artikel Fox News!

Presiden Rusia Vladimir Putin mengumumkan pada hari Rabu bahwa Rusia telah mencapai “kesuksesan besar” dalam pengujian kapal selam tak berawak kelas Poseidon berkemampuan nuklir, dan menggambarkan sistem tersebut sebagai langkah besar dalam program senjata strategis negara tersebut, menurut Reuters.

“Untuk pertama kalinya, kami tidak hanya dapat meluncurkannya dengan mesin peluncuran dari kapal selam pengangkut, tetapi juga meluncurkan unit tenaga nuklir yang perangkatnya telah dijalankan selama jangka waktu tertentu,” kata Putin. “Tidak ada yang seperti ini.”

“Kekuatan Poseidon secara signifikan melebihi kekuatan rudal antarbenua Sarmat yang menjanjikan,” katanya, mengacu pada prototipe Satin 2 Rusia.

Trump mengatakan dia tidak akan membuang waktu untuk bertemu dengan Putin kecuali kesepakatan dengan Ukraina segera tercapai

Presiden Rusia Vladimir Putin (NASA/JPL-Caltech melalui AP)

Poseidon, pertama kali diluncurkan pada tahun 2018, dirancang untuk melakukan perjalanan melintasi lautan dengan kecepatan tinggi menggunakan tenaga nuklir dan membawa hulu ledak besar. Para pejabat Rusia mengklaim senjata ini dapat menciptakan gelombang radiasi dahsyat yang mampu menyerang sasaran di pesisir pantai, meski status operasionalnya belum diverifikasi secara independen.

Putin juga menyebutkan kemajuan dalam sistem strategis lainnya, termasuk rudal jelajah bertenaga nuklir Burevestnik, yang menurut Moskow mampu terbang tanpa batas waktu dan menghindari pertahanan rudal. Para pejabat Rusia melaporkan keberhasilan uji terbang rudal Burevestnik pada awal pekan ini sebagai bagian dari kesiapan nuklir yang lebih luas.

Rusia mengatakan uji coba Burevestnik yang berhasil menempuh jarak lebih dari 14.700 mil, menimbulkan keheranan di Barat.

Pada hari Senin, Presiden Donald Trump menanggapi uji coba senjata Rusia baru-baru ini, dengan mengatakan kepada wartawan di pesawat Air Force One bahwa Putin “seharusnya mengakhiri perang di Ukraina, bukan menguji rudal.” Dia menambahkan bahwa AS memiliki “kapal selam nuklir tepat di lepas pantainya… sehingga tidak perlu melakukan perjalanan sejauh 8.000 mil,” dan memperingatkan bahwa “kami juga tidak bermain-main dengan mereka.”

Trump membekukan Putin karena tidak mengambil ‘tindakan yang cukup’ menuju perdamaian – pembicaraan di masa depan tidak pasti

Latihan nuklir Rusia

Peluncuran rudal balistik antarbenua Yars sebagai bagian dari latihan nuklir Rusia dari lokasi peluncuran di Plesetsk, barat laut Rusia, 2022 (Layanan Pers Kementerian Pertahanan Rusia melalui AP)

Trump mengatakan bahwa alih-alih fokus pada pengembangan rudal, Putin sebaiknya “mengakhiri perang… Perang yang seharusnya memakan waktu seminggu kini sudah memasuki tahun keempat.”

Dalam beberapa hari terakhir, Moskow telah meningkatkan serangannya di Ukraina timur, mengklaim bahwa mereka telah merebut beberapa desa di garis depan, dan mendekati kota strategis Pokrovsk di wilayah Donetsk. Awal bulan ini, Putin mengatakan pasukan Rusia telah merebut hampir 5.000 kilometer persegi wilayah Ukraina sejak awal tahun – sebuah klaim yang disengketakan oleh Ukraina.

Klik di sini untuk mengunduh aplikasi FOX NEWS

Para pejabat AS dan NATO belum secara independen mengkonfirmasi uji coba Poseidon tersebut, dan Pentagon menolak berkomentar.

Reuters dan Associated Press berkontribusi pada laporan ini.

Tautan sumber

Continue Reading

Trending